Module Catalogue
Regulatory Affairs
and Compliance
E-learning Solutions

24/7 learning
Self-paced learning
No geographical barriers
Always up to date

Learning for life
Module Catalogue Contents

About Us:

Zenosis is an Internet-based, regulatory and compliance learning-on-demand provider. Zenosis is available as a remote or integrated solution for life science organisations with contrasting sizes of user base. This almost instantly deployable solution is a continually updated resource providing vital knowledge that will enable your staff to comply with regulatory requirements and increase productivity. This is offered at a cost substantially less than that of conventional training methods, resulting in increased return on investment.

Zenosis modules are accredited with Continuing Professional Development (CPD) points by the Faculty of Pharmaceutical Medicine of the Royal Colleges of Physicians of the United Kingdom. Some are also approved by the Royal Society of Chemistry for purposes of CPD; these are indicated by the Society’s logo on the relevant pages of this catalogue.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESS01</td>
<td>Essentials of EU and US Regulatory Affairs for Human Medicinal Products</td>
</tr>
<tr>
<td>ESS02</td>
<td>Essentials of Monoclonal Antibodies</td>
</tr>
<tr>
<td>SUB01</td>
<td>Orphan Drug Designation in the USA and Europe</td>
</tr>
<tr>
<td>SUB02</td>
<td>The European Centralised Procedure (CP)</td>
</tr>
<tr>
<td>SUB03</td>
<td>The Mutual Recognition Procedure (MRP)</td>
</tr>
<tr>
<td>SUB04</td>
<td>Preparing Submissions in the Common Technical Document (CTD) Format</td>
</tr>
<tr>
<td>SUB05</td>
<td>Electronic Common Technical Document (eCTD)</td>
</tr>
<tr>
<td>SUB06</td>
<td>Variations to Marketing Authorisations in Europe</td>
</tr>
<tr>
<td>SUB09</td>
<td>The New Drug Application (NDA) for Marketing Approval in the USA</td>
</tr>
<tr>
<td>SUB11</td>
<td>The Decentralised Procedure (DCP)</td>
</tr>
<tr>
<td>SUB12</td>
<td>Registration of Medicinal Products Based on Monoclonal Antibodies</td>
</tr>
<tr>
<td>SUB13</td>
<td>How to Gain Approval to Market a Generic Drug in the USA</td>
</tr>
<tr>
<td>SUB14</td>
<td>The Regulatory Pathway to Approval of Follow-on Biologics (Biosimilars) in the USA</td>
</tr>
<tr>
<td>CT01</td>
<td>How to Gain Approval to Conduct Clinical Trials in Europe</td>
</tr>
<tr>
<td>CT03</td>
<td>An Introduction to ICH Good Clinical Practice</td>
</tr>
<tr>
<td>CT04</td>
<td>An Introduction to Clinical Trial Preparation and Design</td>
</tr>
<tr>
<td>CT06</td>
<td>Clinical Trial Monitoring: Site Evaluation and Set-up</td>
</tr>
<tr>
<td>CT07</td>
<td>An Introduction to Clinical Trials and Drug Development</td>
</tr>
<tr>
<td>CT08</td>
<td>Clinical Trial Monitoring: Study Monitoring, Documentation and Closure</td>
</tr>
<tr>
<td>CT09</td>
<td>Good Clinical Practice Inspections and Audits</td>
</tr>
<tr>
<td>CT10</td>
<td>The Investigational New Drug Application (IND) to Conduct FDA-regulated Clinical Trials</td>
</tr>
</tbody>
</table>
Module catalogue contents continued

- **PKPD01** An Introduction to Pharmacokinetics and Pharmacodynamics in Drug Development and Registration
- **PKPD02** Conducting Pharmacokinetic and Pharmacodynamic Studies
- **GMP01** An Introduction to Good Manufacturing Practice for Medicinal Products
- **GMP02** Good Documentation Practice
- **GMP03** Good Manufacturing Practice in Cleaning and Sanitation
- **GMP04** Good Manufacturing Practice for the Warehouse
- **GMP05** Good Manufacturing Practice in Processing Medicinal Products
- **GMP06** Good Manufacturing Practice in Packaging Medicinal products
- **GMP07** Corrective and Preventive Action (CAPA) in Medicinal Products Manufacture
- **QAC01** An Introduction to Good Quality Control Laboratory Practice
- **PV03** An Introduction to Drug Safety and Pharmacovigilance
- **PV04** Signal Detection and Management in Pharmacovigilance
- **PV05** Risk Management Planning for Medicinal Products
- **PV06** Urgent Safety Restrictions
- **PV07** Good Pharmacoepidemiology Practice
- **ICT01** Compliance with Regulation 21 CFR Part 11 on Electronic Records and Electronic Signatures

Zenosis Ltd. is a subsidiary of Leopink Ltd.
Finding the right module for you and where to go from there.

Key:

- = Part of the selected topic
- - - = Related to the selected topic content

Zenosis ltd. is a subsidiary of Leopink ltd.
Finding the right module for you and where to go from there.

- **GMP01:** An Introduction to Good Manufacturing Practice for Medicinal Products
- **GMP02:** Good Documentation Practice
- **GMP03:** Good Manufacturing Practice in Cleaning and Sanitation
- **GMP04:** Good Manufacturing Practice for the Warehouse
- **GMP05:** Good Manufacturing Practice in Processing Medicinal Products
- **GMP06:** Good Manufacturing Practice in Packaging Medicinal Products
- **GMP07:** Corrective and Preventive Action (CAPA) in Medicinal Products Manufacture
- **QAC01:** An Introduction to Good Quality Control Laboratory Practice

- **PV03:** An Introduction to Drug Safety and Pharmacovigilance
- **PV04:** Signal Detection and Management in Pharmacovigilance
- **PV05:** Risk Management Planning for Medicinal Products
- **PV06:** Urgent Safety Restrictions
- **PV07:** Good Pharmacoepidemiology Practice
- **ICT01:** Compliance with Regulation 21 CFR Part 11 on Electronic Records and Electronic Signatures

Zenosis Ltd. is a subsidiary of Leopink Ltd.
ESS01: Essentials of EU and US Regulatory Affairs for Human Medicinal Products

ESS02: Essentials of Monoclonal Antibodies
This foundation-level module is the ideal introduction for new entrants to the field of pharmaceutical regulatory affairs and compliance. It describes the principal requirements that must be satisfied to gain and maintain approval to market medicinal products in the USA and Europe. The legal framework and the roles of major players in regulation are presented. The life-cycle of a drug is outlined. The various procedures available for assessment and approval of products are described and their requirements outlined. Obligations to be fulfilled after marketing approval are discussed.

Who will benefit from this module?

All staff in the pharmaceutical and biotechnology industries who are inexperienced in regulatory affairs and compliance will find the module an invaluable introductory training course. More experienced personnel will find it a useful reference tool. It will also be of benefit to healthcare professionals who contribute to the development of medicinal products.

Learning objectives

- Describe the role and responsibilities of regulatory affairs within the pharmaceutical industry in both the EU and the USA.
- Identify the main legislative instruments relating to medicinal products in both the EU and USA.
- Understand the main phases of the drug development process and be aware of the regulatory requirements that apply.
- Describe the requirements for applications for marketing approval and the procedures to be followed in both the EU and USA.
- Identify post-marketing regulatory activities in both the EU and USA.
Monoclonal antibodies (mAbs for short) are the leading products of biotechnology. Drugs based on mAbs dominate the list of top-selling medicines worldwide. In addition, mAbs have many uses in medical diagnosis, in laboratory analysis, and in the biotechnology industry itself.

This module will introduce you to monoclonal antibodies, explaining how they work, how they are made, and the many uses to which they are put.

Who will benefit from this module?

This module will benefit anyone educated in science to high school level or beyond who wants an introduction to the basics of monoclonal antibodies.

Learning objectives

- Describe the structure and function of antibodies in the body
- Distinguish types of monoclonal antibody by their source and constitution
- Outline important factors in the production of mAbs
- Identify major uses of mAbs
Regulatory Submissions

SUB01: Orphan Drug Designation in the USA and Europe
SUB02: The European Centralised Procedure (CP)
SUB03: The Mutual Recognition Procedure (MRP)
SUB04: Preparing Submissions in the Common Technical Document (CTD) Format
SUB05: Electronic Common Technical Document (eCTD)
SUB06: Variations to Marketing Authorisations in Europe
SUB09: The New Drug Application (NDA) for Marketing Approval in the USA
SUB11: The Decentralised Procedure (DCP)
SUB12: Registration of Medicinal Products Based on Monoclonal Antibodies
SUB13: How to Gain Approval to Market a Generic Drug in the USA
SUB14: The Regulatory Pathway to Approval of Follow-on Biologics (Biosimilars) in the USA
Orphan Drug Designation in the USA and Europe

Medicines for the prevention, diagnosis, or treatment of rare diseases have become known as ‘orphan drugs’ because of their commercial unattractiveness. Development of such products is successfully encouraged through incentives offered by regulatory authorities. To qualify for important incentives, the sponsor of a drug must gain ‘orphan designation’ for its use in an indication. This module describes the requirements for orphan designation and how to apply for it in the USA and the European Economic Area.

Who will benefit from this module?
This module is intended primarily for regulatory affairs professionals. Staff inexperienced in regulatory affairs and compliance will find the module an invaluable introductory training course; more-experienced personnel will find it a useful reference tool. More generally, it will be of interest to all those involved in the development and registration of medicinal products.

Module outline
- Module overview
- Rare diseases and orphan drugs
 - US designation
 - European designation
- Assessment

Learning objectives
- Explain why and how governments encourage the development of medicines for rare human diseases, and identify important sources of information
- Specify incentives offered for the development of medicines for rare diseases in the USA and in Europe
- State the criteria for orphan drug designation in the USA and in Europe
- List the contents of an application for orphan designation in the USA and in Europe, describe how to make an application in each case, and outline the process of review by the regulatory authority
- Outline the sponsor’s obligations and options after orphan designation in the USA and in Europe.
The Centralised Procedure is one of three routes available to applicants to gain multinational marketing authorisation within the European Economic Area (EEA) on the basis of a single application. In the CP, one successful application leads to a marketing authorisation being issued by the European Commission that applies throughout the EEA. The CP is mandatory for certain types of products.

This module describes the various players in the procedure, the sequence and duration of the stages involved, and the requirements on content, format and timing of submissions.

This module is primarily aimed at regulatory affairs professionals dealing with marketing authorisation applications and related submissions for regulatory approval in Europe. More generally, it will also be of interest to all those involved in the development and registration of medicinal products.

Learning objectives

- Provide an overview of the CP process.
- Identify which products may/must use the CP.
- For products for which the CP is optional, outline the advantages and disadvantages of the CP compared with other routes to marketing authorisation.
- Describe requirements on content, format and timing of submissions.
- Specify the sequence and duration of the stages of the CP and the responsibilities of the participants.
- Describe the role of the European Medicines Agency and its relevant competent committee.
- Outline fast-track provisions.
- Describe the appeals procedure.
The Mutual Recognition Procedure (MRP)

The Mutual Recognition Procedure is one of three routes available to applicants to gain multinational Marketing Authorisation within the European Economic Area (EEA) on the basis of a single application. A national authorisation is converted to harmonised authorisations issued in a number of other member states chosen by the applicant.

The MRP is similar to the Decentralised Procedure but with later involvement of the Concerned Member States in the assessment by the Reference Member State. The Coordination Group for Mutual Recognition and Decentralised Procedures provides guidance and acts to facilitate agreement among the participating states.

This module describes the roles of the various players in the procedure, the sequence and duration of the stages involved, and the requirements on content, format and timing of submissions. It discusses the special issues that apply to generic products in the MRP.

Who will benefit from this module?

This module is primarily aimed at regulatory affairs professionals dealing with marketing authorisation applications and related submissions for regulatory approval in Europe. More generally, it will also be of interest to all those involved in the development and registration of medicinal products.

Module outline

- Module overview
- Introduction
- The MRP process
- Generics and the MRP
- Assessment

Learning objectives

- Provide an overview of the MRP process.
- Describe the pre-submission and submission actions in relation to timeline deadlines.
- Specify the responsibilities of the Reference Member State (RMS), the Concerned Member States (CMSs) and the applicant.
The CTD is the internationally recognised standard format for submissions to medicines regulatory authorities. Its use is mandatory for all applications in the European Economic Area, required for prescription drugs in Japan and elsewhere, and accepted by a growing number of other national regulators. Use of the electronic version of the CTD is mandatory for applications for marketing approval and all subsequent submissions in the USA. This module explains the rationale for the CTD and provides guidance on its structure and format and the ways in which it is used.

Who will benefit from this module?
Regulatory affairs and compliance staff, and all those involved in drug development and who contribute to regulatory submissions, will find the module an invaluable introductory training course and/or a useful reference tool. Specialists in data handling, knowledge management or documentation will also wish to familiarise themselves with its contents.

Learning objectives
- Explain the rationale for the CTD, and describe the ways in which it is used.
- Identify regional differences in regulatory requirements for information in a CTD-formatted submission.
- Describe the structure of the CTD.
- Access guidance on detailed structure and content of the CTD.
- Outline formatting requirements for a CTD dossier.
- Convert EU NTA and US NDA section codes and headings to their CTD equivalents.

Module outline
- Introduction
- High-level structure
- Fine structure and format
- Using the CTD
- Conversion tools
- Assessment

Introduction
This session introduces you to the nature of the Common Technical Document (CTD), a global standard designed by the ICH (International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use) The composition of a regulatory submission team is outlined.

High-level structure
In this session you will become more familiar with the five modules of the CTD.

Fine structure and format
You will be given access to guidelines that specify in detail the structure of each module of the CTD and the relationship between their sections and the documents that make up a dossier. Recommendations are also given on how to segregate and paginate documents and how to format pages, tables of contents and cross-references.

Using the CTD
Different ways in which you can use the CTD in practice are described. Production of a CTD dossier in both paper and electronic format is outlined.

Conversion tools
Two tools allow you to convert section headings in the old EU NTA format or the US NDA format to their equivalents in the CTD.

Assessment
Multiple-choice mastery assessment.
The eCTD specification has been developed to facilitate the global electronic submission, review and lifecycle management of medicinal product dossiers for regulatory applications. It broadens the scope of the CTD to include information on variations, renewals and amendments, so that it is no longer a static document but is updatable throughout the life of the product. This module outlines the eCTD specification, discusses the approach to regional differences in dossiers, and provides guidance on creation of an eCTD submission. The module provides a training and reference tool that will be of particular value to those new to the use of the format.

This module is an essential tool for regulatory affairs and compliance staff and specialists in data handling, knowledge management or documentation. All those involved in drug development and who contribute to regulatory submissions will also wish to familiarise themselves with its contents.

Module outline

- Introduction
- Technical infrastructure
- Directory structure
- Creating an eCTD submission
- Special components
- Tools
- Assessment

Who will benefit from this module?

This module is an essential tool for regulatory affairs and compliance staff and specialists in data handling, knowledge management or documentation. All those involved in drug development and who contribute to regulatory submissions will also wish to familiarise themselves with its contents.

Learning objectives

- Describe the structure, requirements and functionality of the eCTD.
- Outline XML basics and the architecture of the eCTD.
- Discuss Document Type Definitions (DTDs) and schemas.
- Explain how to build an eCTD.
- Specify regional differences.
- Discuss life cycle and change management.
- List criteria that will make an electronic application technically valid.
- Initiate electronic transfer to a regulatory authority.
- Create, submit and maintain an eCTD dossier throughout the life of a drug product.
Changes to the terms of marketing authorisations for medicinal products, called variations in Europe, must be notified to or approved by the relevant regulatory authorities. Variations include changes to the composition of products, their manufacturing processes, the way they are used, or the indications for which they are authorised. Common approaches are adopted within the European Economic Area to variations to marketing authorisations approved through the Centralised, Decentralised or Mutual Recognition Procedures. Recent legislation has substantially modified the regulatory requirements and extended them to purely national authorisations by member states. This module, which is fully up to date with the new legislation, covers the classification of variations into their several types and the regulatory requirements, guidance and procedures to be followed for each type.

Who will benefit from this module?
Regulatory affairs and compliance staff, and all those who contribute to regulatory submissions, will find the module an invaluable introductory training course and/or a useful reference tool.

Learning objectives
- Define the concept of variations to marketing authorisations in the EEA.
- Identify which type of variation is appropriate for each kind of change to be made.
- Identify the documentation required to support the variation.
- Describe how to prepare and submit variation notifications or applications appropriate for each type of variation and route of regulatory approval, including options for grouping of variations and for work sharing of assessment.
The New Drug Application (NDA) is the regulatory vehicle through which sponsors formally propose that the Food and Drug Administration (FDA) approve a new pharmaceutical for marketing and sale in the USA.

This module sets out the FDA’s requirements for content and formatting of the NDA, details the process by which the agency reviews and approves an application, and describes the applicant’s actions in that process.

Mechanisms for expedited drug development and review, including breakthrough therapy designation, are also outlined. The module is up to date with the sixth reauthorisation of the Prescription Drug User Fee Act (PDUFA VI) for fiscal years 2018 to 2022.

This module is intended primarily for regulatory affairs professionals who are new to the NDA or who seek a refresher course. It will also be of interest to others involved in drug development and/or who interact with the FDA.

Module outline
- Module overview
- Introduction
- High-level content and formatting
- Quality information
- Nonclinical information
- Clinical information
- Administrative information and summaries
- NDA review and approval process
- Expedited development and review
- Assessment

Who will benefit from this module?
This module is intended primarily for regulatory affairs professionals who are new to the NDA or who seek a refresher course. It will also be of interest to others involved in drug development and/or who interact with the FDA.

Learning objectives
- Summarise the content and format requirements for a New Drug Application
- Outline the procedural requirements for an NDA submission to the FDA.
- Describe the role of the FDA in the NDA review and approval process.
- List the principal provisions available from the FDA for expedited drug development and review, and summarise the criteria that apply to them.
The Decentralised Procedure (DCP)

The Decentralised Procedure is one of three routes available to applicants to gain multinational marketing authorisation within the European Economic Area (EEA) on the basis of a single application. It can be used only for a product which has no existing marketing authorisation in any member state. It is similar to the Mutual Recognition Procedure (MRP) but with earlier involvement of the Concerned Member States in the assessment by the Reference Member State. The Coordination Group for Mutual Recognition and Decentralised Procedures (CMD) provides guidance and acts to facilitate agreement among the participating states.

This module describes the roles of the various players in the procedure, the sequence and duration of the stages involved, and the requirements on content, format and timing of submissions. It discusses the special issues that apply to generic products in the DCP.

Who will benefit from this module?

This module is primarily aimed at regulatory affairs professionals dealing with marketing authorisation applications and related submissions for regulatory approval in Europe. More generally, it will also be of interest to all those involved in the development and registration of medicinal products.

Learning objectives

- Provide an overview of the DCP process.
- Describe the pre-submission and submission actions in relation to timeline deadlines.
- Specify the responsibilities of the Reference Member State (RMS), the Concerned Member States (CMSs) and the applicant.
This module addresses characteristic issues influencing the registration of medicinal products based on monoclonal antibodies (mAbs), for use in humans. Regulatory requirements for the registration of biological medicinal products such as those based on mAbs differ in certain respects from those for small-molecule products. This is because of the distinct characteristics of biologics, such as complex structure and susceptibility to variation during manufacture.

In this module, we focus on distinctive issues in the production and testing of mAbs, in the context of relevant regulatory guidance. We discuss manufacturing quality, nonclinical, and clinical issues. We address aspects specific to radiolabelled mAbs. Finally, we identify the pathways for applications to conduct clinical trials and to market mAb-based products in Europe and the USA.

This module will benefit regulatory affairs staff and others concerned with the registration of medicinal products based on monoclonal antibodies.

- Discuss key quality issues in the manufacture of mAb-based products
- Discuss key issues in nonclinical studies of mAb-based products
- Discuss key issues in the clinical investigation and use of mAb-based products
- Identify specific considerations for radiolabelled mAb-based products
- Identify the pathways for applications to conduct clinical trials and to market mAb-based products in Europe and the USA

Module overview
An outline of the module’s scope and objectives, and notes on terminology.

Quality issues
Quality information requirements for the registration of mAb-based products focus on characterisation and specifications in areas such as identity, purity, and potency. Information must be provided on the origin and history of the starting materials, and the manufacturing process and its validation must be thoroughly described. Measures taken and validated to control impurities and to clear viruses and other contaminants need to be set out.

Nonclinical issues
Like other drugs, mAb-based products must undergo laboratory and animal testing to define their pharmacological and toxicological effects before they can be studied in humans. The regulatory framework for nonclinical testing of mAb-based products is essentially similar to that for non-biological drugs. Nevertheless, mAbs present special issues, requiring an adaptable, ad hoc scientific approach to nonclinical testing. In this session, we discuss issues such as studies of cross-reactivity with human tissues, choice of species for nonclinical studies, exposure level, and recipient antibody responses.

Clinical issues
MAbs present issues for clinical development and use, such as assessment of immunogenicity, which typically do not arise for small-molecule medicinal products. This session addresses such characteristic issues.

Radiolabelled antibodies
Monoclonal antibodies may form the basis of radiopharmaceuticals for in-vivo diagnostic use or for radiotherapy. In this session we address characteristics of radiolabelled mAbs.

Regulatory submissions
In this session, we identify the pathways for applications to conduct clinical trials and to market a mAb-based product in Europe and the USA, along with relevant legal statutes, regulations, and regulatory guidance.

Assessment
Multiple-choice mastery assessment.
This module outlines the legislative and regulatory context for the development of generic drugs and describes the essential role of the Abbreviated New Drug Application (ANDA) in gaining marketing approval. The use of information in the ‘Orange Book’ is explained, as is the role of patent certification in the application. The importance of establishing bioequivalence between a generic and its reference product is emphasised. The module specifies the content and format requirements for an ANDA submission and describes the FDA’s review and approval process. An outline is given of the Generic Drug User Fee Amendments (GDUFA) and the law’s effects on industry players.

The module is up to date with the many final and draft publications released by the FDA in US fiscal year (FY) 2017 that provide guidance for industry on applications for approval of generic drugs. It is also up to date with the provisions of the second authorisation of GDUFA, applicable from FY 2018.

This module will benefit staff working in regulatory affairs, medical affairs, clinical development, CMC, analytical methods, and quality assurance departments, and other personnel who contribute to the development and registration of generic drugs.

Learning objectives

- List the criteria for therapeutic equivalence of drugs
- Outline the types of patent classification for an ANDA submission
- Explain how to use the Orange Book in the development of a generic drug
- Describe methods for determining bioequivalence of drug products
- Outline the content and format requirements for an ANDA submission
- Describe the ANDA review and approval process
- Outline the provisions of the Generic Drug User Fee Amendments and summarise their effects on generics sponsors

Module overview
An outline of the module’s scope and objectives, and notes on terminology.

Generic drugs and the ANDA
An overview of the legislative and regulatory context for the development and approval of generic drugs, particularly the Hatch-Waxman Act; a summary of the criteria for therapeutic equivalence of drugs; obtaining guidance from the FDA; controlled correspondence.

Patent certification
The role of patent certification in an ANDA submission, the different types of certification, what happens when a patent is challenged, and the circumstances under which marketing exclusivity may be afforded to a generics sponsor.

The Orange Book
The use of the Orange Book in generic drug development, the format and content of the Book’s listings, and how to extract information for an ANDA.

Bioequivalence
The crucial importance of establishing bioequivalence with a reference listed drug; tests of bioavailability and bioequivalence; the statistical criteria for bioequivalence; waivers of in-vivo studies.

ANDA compilation and submission
Planning and managing an ANDA project; regulatory requirements on content and format; quality (CMC), labeling, and bioequivalence information; submitting an ANDA to the FDA’s Office of Generic Drugs.

ANDA review and approval
The process of review by the FDA; review duration and success rate; communication between applicant and FDA; expedited review; petitions; amendments and easily correctable deficiencies; outcomes of review, and the applicant’s options in response to those outcomes.

The Generic Drug User Fee Amendments
The types of fees that the generics industry must now pay to the FDA; requirements for self-identification of generics industry players; the FDA’s performance goals for review and inspection; changes brought about by GDUFA II.

Assessment
Multiple-choice mastery assessment.
The regulation of biological medicinal products is governed by different laws from those that apply to small-molecule synthetic drugs. Producing faithful copies of therapeutic proteins is more challenging than producing generic drugs. The US legal framework for the licensure of follow-on biologics, and accompanying regulatory guidance from the Food and Drug Administration (FDA), have been established only in recent years.

We describe the provisions of the Biologics Price Competition and Innovation Act, identify criteria for licensing a follow-on biologic as ‘biosimilar’ or ‘interchangeable’, specify periods of market exclusivity that apply, and discuss patent infringement issues.

Finally, we describe the provisions of the Biosimilar User Fee Act, which authorises the FDA to collect fees from follow-on biologics sponsors, to support review activities.

Who will benefit from this module?

This module will mainly benefit regulatory affairs staff concerned with the licensure of follow-on biological products.

Learning objectives

- Outline the provisions of the Biologics Price Competition and Innovation Act
- Identify criteria for licensure of a follow-on biologic as biosimilar or interchangeable
- Specify periods of market exclusivity applicable to biological medicinal products
- Outline patent infringement issues relevant to biological medicinal products
- Access FDA guidance on development and licensure of follow-on biologics
- Outline the provisions of the Biosimilar User Fee Act
<table>
<thead>
<tr>
<th>CT01</th>
<th>How to Gain Approval to Conduct Clinical Trials in Europe</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT03</td>
<td>An Introduction to ICH Good Clinical Practice</td>
</tr>
<tr>
<td>CT04</td>
<td>An Introduction to Clinical Trial Preparation and Design</td>
</tr>
<tr>
<td>CT06</td>
<td>Clinical Trial Monitoring: Site Evaluation and Set-up</td>
</tr>
<tr>
<td>CT07</td>
<td>An Introduction to Clinical Trials and Drug Development</td>
</tr>
<tr>
<td>CT08</td>
<td>Clinical Trial Monitoring: Study Monitoring, Documentation and Closure</td>
</tr>
<tr>
<td>CT09</td>
<td>Good Clinical Practice Inspections and Audits</td>
</tr>
<tr>
<td>CT10</td>
<td>The Investigational New Drug Application (IND) to Conduct FDA-regulated Clinical Trials</td>
</tr>
</tbody>
</table>
How to Gain Approval to Conduct Clinical Trials in Europe

To conduct a clinical trial in the European Economic Area the sponsor must apply for authorisation from the national competent authority (i.e. medicines regulator), and favourable opinion must be obtained from a research ethics committee, in each member state in which the trial is to take place. This module sets out the requirements for successful compilation, submission and maintenance of the applications.

In addition to being fully compliant with current European Union legislation, the module looks forward to the implementation of the Clinical Trials Regulation.

Who will benefit from this module?

The module will benefit:
- regulatory affairs professionals and other staff of pharmaceutical or biotechnology companies involved in clinical development of medicinal products; and
- healthcare professionals conducting clinical research as sponsor-investigators.

It will be of particular value to those who are new to European regulatory affairs, but familiarity with the basics of Good Clinical Practice is assumed.

Learning objectives

- Outline the legal and regulatory framework that governs clinical trials in the European Economic Area.
- Summarise the procedures that must be carried out to gain approval to proceed with a trial.
- Identify the principal components of an application to a national competent authority for clinical trial authorisation and describe their contents.
- Discuss the principal areas of concern to an ethics committee and describe the information to be submitted to one.
- Specify what measures must be taken to maintain the authorisation of a trial in progress.
- Identify changes that will be brought about by the Clinical Trials Regulation.

Module overview

An outline of the module’s scope and objectives, and notes on terminology.

The European context

This session explains the legal and regulatory framework for clinical trials in Europe.

Applying for approval

This session outlines the application procedures for clinical trial authorisation (CTA) and for ethics committee (EC) favourable opinion. It provides a decision tree through which you can determine whether your prospective investigation is a clinical trial. It describes how to register a trial with the EudraCT database and obtain an EudraCT number. It summarises the contents of applications and the processes and outcomes of reviews.

Application for clinical trial authorisation

The contents of a CTA application are discussed in more detail, focusing on the investigator’s brochure, investigational medicinal product (IMP) dossier, circumstances in which a simplified IMPD or Summary of Product Characteristics may be substituted, and other IMP-related data. Online compilation of the application form is explained.

Application for ethics committee favourable opinion

Significant features of an application for EC favourable opinion are discussed in more detail, including the clinical protocol, informed consent form, and subject recruitment materials.

Maintaining authorisation

This session deals with the regulatory compliance activities that have to be carried out once a clinical trial has been approved. It examines the procedure for submitting substantial amendments, safety reporting requirements, and declaration of the end of a trial.

The Clinical Trials Regulation

This short session looks forward to the introduction of the Clinical Trials Regulation, which will replace the Clinical Trials Directive and establish greater uniformity in procedures for approval of clinical trials throughout the EEA.

Assessment

Multiple-choice mastery assessment.
An Introduction to ICH Good Clinical Practice

Approximate module time: 3 hours

Level: Foundation

Audience: Research, Regulatory, Compliance

Region: USA, Europe, Other

CPD Points: 3

Module outline

- Module overview
- ICH, harmonisation, and principles of GCP
- Clinical research teamwork
- Documentation
- Investigator responsibilities
- Informed consent
- Monitor responsibilities
- Assessment

Good Clinical Practice (GCP) is a set of internationally recognised ethical and scientific quality requirements for designing, conducting, recording and reporting clinical trials. Compliance with GCP principles is required by regulatory authorities in many countries for the authorisation of clinical trials and the acceptance of their data. The International Council for Harmonisation’s guideline E6, often referred to as ICH GCP, is the international standard specification for Good Clinical Practice.

This module introduces GCP and sets it in the context of typical collaborative work in clinical research. We discuss the role and goals of the International Council for Harmonisation and the principles of GCP. We describe the roles of members of a team working on a clinical trial. We set out the documentation that must be created and maintained. We specify the responsibilities of trial sponsors, clinical investigators and monitors. We explain the rationale and execution of the informed consent process, and discuss issues that arise in practice.

The module is fully up to date with Revision 2 of ICH GCP.

Who will benefit from this module?

This module will benefit all those who participate in clinical research, whether they work in the pharmaceutical or biotechnology industry or as healthcare professionals. A sound knowledge of GCP is essential for clinical research associates / monitors, project managers, clinical investigators, clinical research coordinators / study nurses, data managers, pharmacists, and others contributing to clinical trials.

Learning objectives

- Explain why and how the ICH influences clinical research practice through its guideline on GCP, and summarise the principles of GCP.
- Identify the major roles in a clinical trial team, outline the responsibilities of each, and discuss how they work together.
- Describe the responsibilities of a trial sponsor.
- Describe the responsibilities of a clinical investigator.
- Explain the rationale and execution of the informed consent process, and discuss issues that arise in practice.
- Describe the responsibilities of a trial monitor.
An Introduction to Clinical Trial Preparation and Design

Approximate module time: 4 hours

Level: Introductory/Intermediate

Audience: Research, Regulatory, Manager, Other

Category: Clinical

Region: USA, Europe, Other

Who will benefit from this module?

This module is intended for all those involved in the preparation, design, conduct or analysis of clinical trials. It will be useful to new entrants to the field or as a refresher for staff, including clinical research associates and data managers, in the clinical/medical departments of pharmaceutical or biotechnology companies or in contract research organisations. It will also be of interest to clinical investigators, study coordinators, and other healthcare staff working on clinical trials.

Module outline

- Overview
- Clinical trials in drug development
- Protocol design
- Clinical trial preparation
- Endpoints
- Statistical elements
- Study design
- Data capture and management
- Assessment

Learning objectives

- Outline the role of clinical trial design in clinical research.
- Identify the relevant legal documents and guidelines relating to clinical trial design.
- Recognise the essential statistical components for clinical trial design and how these affect design choice.
- Define the general principles and concepts for trial design, and describe the implications of design choice on regulatory acceptance.
- Identify the strategies to improve data capture and management.
- Describe how electronic data capture can improve clinical trial development.

Worldwide expenditure on R&D by the pharmaceutical industry is continually increasing. Most of the financial investment in the production of a new drug is allocated to clinical trials.

Given the financial risk involved, it is crucially important that clinical trials be designed and set up efficiently to obtain adequate and accurate data in compliance with regulatory requirements.

This module aims to provide you with effective strategies for the preparation and conduct of a clinical trial, while adhering to regulatory safety standards. Management of data for submission is also covered.

Clinical trials in drug development

The crucial role of clinical trials in the drug development cycle is examined. Regulatory requirements and financial pressures, and their interaction with trial design, are discussed.

Protocol design

This session provides an overview of clinical trial protocols. Opportunities to improve a clinical trial protocol for regulatory approval are also discussed.

Clinical trial preparation

This session provides an overview of the role of the sponsor in supporting and improving quality in the conduct of clinical trials.

Endpoints

This session focuses on clinical trial endpoints. The purpose of endpoints and the types are discussed in this part.

Statistical elements

This session covers the role of statistics in clinical trial design and analysis, as acknowledged in the International Council for Harmonisation (ICH) guideline for Good Clinical Practice (GCP).

Study design

This session provides an overview of the main types of study design.

Data capture and management

This session describes the purpose of data capture and explores efficiencies in data management as part of the evolving regulatory landscape.

Assessment

Multiple-choice mastery assessment.
The sponsor of a clinical trial needs to reach agreement with clinical investigators to conduct the trial. The suitability of investigators and their institutional sites, typically hospitals, has to be evaluated, and the trial has to be set up at each site. This module describes the processes involved, focusing particularly on the role of a Clinical Research Associate (CRA) employed or contracted by the sponsor to monitor the trial.

The purpose of investigational site evaluation and set-up is to ensure that the site has access to the required patient population, has appropriately qualified, trained and committed staff with adequate time and facilities, and that it is fully prepared for the safe and successful conduct of the clinical trial. In this module we set out the criteria, procedures and documentation for evaluating a site and setting up a trial there.

The module is intended for those involved in clinical research and development, in particular the monitoring of clinical trials, and those who require an understanding of what this entails. It and its companion module CT08 provide a comprehensive introduction to monitoring for new CRAs, or additional training and professional development for those already working in the field. It will also be of value to clinical research coordinators, clinical investigators and other healthcare professionals involved in clinical studies.

Learning objectives

- State the objectives of an investigational site qualification visit and describe how to carry one out.
- Describe how to prepare for initiation of a clinical trial at an investigational site.
- State the objectives of a trial initiation visit and describe how to carry one out.

Module outline

- Module overview
- Investigational site qualification
- Preparation for trial initiation
- Trial initiation at an investigational site
- Assessment

Who will benefit from this module?

The module is intended for those involved in clinical research and development, in particular the monitoring of clinical trials, and those who require an understanding of what this entails. It and its companion module CT08 provide a comprehensive introduction to monitoring for new CRAs, or additional training and professional development for those already working in the field. It will also be of value to clinical research coordinators, clinical investigators and other healthcare professionals involved in clinical studies.
This module provides an understanding of how clinical trials fit into the drug development process. It outlines the key historical events leading to the development of controlled clinical trials. It specifies the purpose of trials, describes their characteristics, and identifies codes of practice and regulations that apply to them. Finally, it discusses the environment of cost control in which the modern pharmaceutical industry operates.

Who will benefit from this module?

This introductory module is an ideal primer for those new to the fields of clinical research or regulatory affairs. It will also provide valuable background information for administrative, sales and other staff in the pharmaceutical and biotechnology industries, enabling them to understand better the context in which they work.

Module outline

- Overview
- History
- Codes and regulations
- Drug development
- Global market
- Assessment

Learning objectives

- Describe the key events in the historical development of the modern pharmaceutical industry
- Outline the key codes of practice and regulatory processes
- Explain how clinical trials fit within the drug development process
- Describe the economic environment within which pharmaceutical companies operate
Clinical Trial Monitoring: Study Monitoring, Documentation and Closure

The sponsor of a clinical trial must arrange for it to be monitored throughout its duration to ensure that the rights and wellbeing of subjects are protected, the trial data are accurate, complete and verified from source documents, and the conduct of the trial complies with the study protocol, Good Clinical Practice and regulatory requirements. In this module we describe how a Clinical Research Associate (CRA) monitors an ongoing trial to its conclusion.

Who will benefit from this module?

The module is intended for those involved in clinical research and development, in particular the monitoring of clinical trials, and those who require an understanding of what this entails. It and its companion module CT06 provide a comprehensive introduction to monitoring for new CRAs, or additional training and professional development for those already working in the field. It will also be of value to clinical research coordinators, clinical investigators and other healthcare professionals involved in clinical studies.

Learning objectives

- Describe how to prepare for and carry out regular monitoring visits to investigational sites
- Describe how to review case report forms (CRFs) and verify consistency of data with source documents
- Describe how to close out a trial at a site
- Discuss the concept and implications of risk-based monitoring
- Identify warning signs that raise suspicion of scientific misconduct or fraud

Module outline

- Module overview
- Site monitoring visits
- Data checking
- Close-out visit
- Risk-based monitoring
- Fraud and scientific misconduct
- Assessment

Module overview

Sets out the module’s scope, objectives and notes on terminology.

Site monitoring visits

Regular visiting of investigational sites by a CRA is the front line of clinical trial monitoring. The visits allow face-to-face interaction with study site personnel and direct access to source records and site resources, providing the best opportunity for the CRA both to assess and to influence the progress and quality of a trial. In this session, we discuss monitoring tasks, the frequency and duration of visits, preparation for a visit, the kinds of deficiencies that may be found at the site, interaction with study staff, assessment of protocol compliance in a variety of areas, investigational product and subject recruitment issues, review of findings, and report and follow-up.

Data checking

Review and verification of data in CRFs and source documents is considered by many to be the CRA’s principal task. It takes up most of his or her time on a monitoring visit and constitutes the primary measure taken on behalf of the sponsor to assure the quality of the data provided by the investigator. In this session, we describe how to carry out CRF review and source document verification (SDV). We discuss the extent of SDV required, outline differences between paper and electronic CRFs, identify aspects of trial conduct for which CRFs and source records should be checked, discuss on-site corrections and resolution of discrepancies, and outline data retrieval and data query procedures.

Close-out visit

Almost all clinical trials require an on-site visit to close the study at a site, irrespective of whether routine monitoring visits have been made. In addition to completing tasks typically carried out at a routine visit, the CRA will be required to perform some actions specific to the end of the trial, such as retrieving or authorising the destruction of unused supplies, retrieving some essential documents, and reminding the investigator of continuing responsibilities. In this session we describe the close-out of a trial at an investigational site.

Risk-based monitoring

Monitoring of clinical research by traditional methods, particularly as regards data checking, is time consuming and laborious. In recent years, regulatory authorities have focused attention on ways of making quality management in general, and monitoring in particular, more efficient through a risk-based approach. Implications of this approach include: increased emphasis on centralised monitoring rather than site visits; and a move away from 100% source document verification toward risk-based and statistically directed sampling of data. In this session we provide a brief introduction to principles of risk-based monitoring.

Fraud and scientific misconduct

The great majority of healthcare professionals undertaking clinical research act with honesty and integrity. However, cases of scientific misconduct and downright fraud do occur. Besides damaging the reputations of those who commit them, such actions have potentially serious consequences for the research and might even affect public health. In this session we distinguish error, misconduct and fraud, discuss the CRA’s role in detecting them, and describe their consequences.

Assessment

Multiple-choice mastery assessment.
Good Clinical Practice (GCP) inspections and audits are carried out to provide assurance that: the rights, safety and welfare of clinical trial subjects are protected; the data that constitute the results of the trials are accurate and reliable; and the trials are carried out in compliance with relevant legal requirements.

This module describes what investigational medicinal product sponsors, contract research organisations and clinical investigators can expect when they undergo inspection or audit. It focuses in particular on inspection by European and US regulators.

The module describes general principles of GCP inspection and audit, discusses preparation for an inspection, and sets out in detail what European and US FDA inspectors will examine. Finally it describes post-inspection actions by the regulator and the inspected party.

Who will benefit from this module?

This module will benefit all those involved in clinical research who already understand the basics of GCP. It will be of value to staff working in clinical, medical and QA departments of pharmaceutical companies and CROs, to independent clinical research associates, and to healthcare professionals conducting clinical studies.

Learning objectives

- Discuss principles of GCP inspections and audits
- Specify activities to be carried out in preparation for an inspection
- Describe what happens when a European regulator inspects the site of a sponsor or contract research organisation
- Describe what happens when a European regulator inspects the site of a clinical investigator
- Describe what happens when the US Food and Drug Administration inspects the site of a sponsor or contract research organisation
- Describe what happens when the US Food and Drug Administration inspects the site of a clinical investigator
- Specify post-inspection actions by the regulator and the inspected party

Module overview

An outline of the module’s scope and objectives, and notes on terminology.

Principles of GCP inspections and audits

Principles, applicable in any regulatory jurisdiction, of inspections and audits: their purpose, who carries them out, in what circumstances, and their possible consequences; routine versus targeted inspections; system versus study-specific inspections.

Preparing for an inspection

Actions you can take to prepare your site for a GCP inspection, whether you work for a sponsor or CRO or as a clinical investigator.

European regulators’ inspection of sponsor and CRO sites

Procedure for inspection of the site of a sponsor or CRO by the regulatory authority of a member state of the European Economic Area: pre-inspection provision of an inspection request and plan to the inspectee; quality system inspection; study-specific inspection.

European regulators’ inspection of investigator sites

Inspection of legal and administrative aspects, organisational aspects, informed consent provisions, subject data, and management of investigational medicinal products.

FDA inspection of sponsor and CRO sites

An outline of pre-inspection activity among the relevant FDA offices is followed by detailed description of what the inspectors examine as regards authority and administration, clinical protocol, institutional review board, informed consent, source documents, CRFs, financial disclosure, investigational product control, records retention, reports to sponsor, and monitoring.

FDA inspection of investigator sites

An outline of investigators’ legal obligations and the possible scope of an inspection is followed by detailed description of what the inspectors examine as regards organisation and personnel, study registration, selection and monitoring of investigators, study monitoring, quality assurance, safety and adverse event reporting, data collection and handling, record retention, financial disclosure, computer systems, electronic records and signatures, and investigational product.

Action after an inspection or audit

This session describes post-inspection actions by regulators, and responses by inspected parties, with particular reference to European and US regulators: meetings at the close of inspections, inspection reports, classification of findings, responses and action plans, post-inspectional correspondence, and possible consequences of serious deficiencies.

Assessment

Multiple-choice mastery assessment.
An Investigational New Drug Application (IND) is a submission to the US Food and Drug Administration (FDA) for permission to conduct a clinical trial of a medicinal product. This module describes regulatory requirements that sponsors or sponsor-investigators must meet for successful compilation, filing and maintenance of INDs. The IND and its role are defined, and the contexts in which it is required are specified.

The information that must be included and the format in which it needs to be presented are outlined. The process of review by the FDA is described, and the outcomes and sponsor’s responses are discussed. The actions necessary to maintain an open IND are set out.

Finally, the regulatory provisions for expanded-access use of investigational drugs are described.

Who will benefit from this module?

- Regulatory affairs professionals and other staff of pharmaceutical or biotechnology companies involved in clinical development of medicinal products; and
- Healthcare professionals conducting clinical research as sponsor-investigators or who wish to treat patients under an expanded-access scheme.

Learning objectives

- Specify the role of an IND and the contexts in which it is required
- Access key regulatory documents relating to INDs
- Describe the contents and format of an IND submission
- Describe the process of FDA review of an IND, the possible outcomes and sponsor’s responses
- Identify actions necessary to maintain an active IND
- Specify options for expanded-access use of investigational drugs

Module outline

- Module overview
- Introduction to Investigational New Drug Applications (INDs)
- IND content and format requirements
- Filing and FDA review
- Maintenance of an IND
- Expanded-access use
- Assessment

Module overview

An outline of the module’s scope and objectives, and notes on terminology.

Introduction to Investigational New Drug Applications (INDs)

This session explains the role and legal status of an IND, sets out the contexts in which one must be filed, summarises the responsibilities of sponsors and investigators, and outlines the pre-submission process.

IND content and format requirements

This session sets out IND contents required by regulations and describes how these are incorporated in a CTD-formatted submission. The significance of the FDA forms 1571 and 1572 are discussed. The major components of an application are outlined: general investigational plan, investigator’s brochure, clinical protocol, Quality/CMC information, nonclinical data, and clinical information.

Filing and FDA review

Options and requirements for submission of an IND are set out, and the review procedure and its outcomes are described. The roles of FDA reviewers are outlined. The significance of a clinical hold and the sponsor’s response to a hold are discussed.

Maintenance of an IND

This session identifies the various types of IND amendments and reports: protocol amendments, IND safety reports, annual reports, and information amendments. It explains when they need to be made and outlines the regulations that govern them. The responsibilities of sponsors and investigators to report safety findings are described, as are requirements for financial disclosure and record retention.

Expanded-access use

This session describes the various types of expanded-access use of investigational drugs to treat patients outside of clinical trials and sketches a scenario of emergency use.

Assessment

Multiple-choice mastery assessment.
Pharmacokinetics and Pharmacodynamics

PKPD01 An Introduction to Pharmacokinetics and Pharmacodynamics in Drug Development and Registration
PKPD02 Conducting Pharmacokinetic and Pharmacodynamic Studies
Pharmacokinetic (PK) and pharmacodynamic (PD) studies provide a bridge between science and medicine in the development of a drug. In this module we describe the role of in-vivo PK and PD studies in a drug development programme, set out the uses to which the findings can be put, and discuss their implications for clinical development and application for marketing approval.

Who will benefit from this module?
Pharmacologists, nonclinical researchers, clinical researchers, regulatory affairs staff, and others who contribute to drug development and registration will benefit from this module.

Module outline
- Module overview
- Role of pharmacokinetics and pharmacodynamics
- PK and PD studies in drug development
- Drug administration routes
- Pharmacodynamic studies
- Assessment

Learning objectives
- Describe the role of pharmacokinetics and pharmacodynamics in drug development and registration
- Identify the main types of pharmacokinetic and pharmacodynamic studies conducted during drug development, their goals, and the uses of the data obtained
- Outline the pharmacokinetic characteristics of the various routes of drug administration
- Discuss how in-vivo pharmacodynamic studies provide a bridge between science and medicine in drug development and registration

PK and PD studies in drug development
In this session we discuss the various types of study carried out to acquire pharmacokinetic and pharmacodynamic data, grouping them into those conducted in animals only, in animals and humans, and in humans only. We identify their goals, rationale, and place in a drug development programme.

Drug administration routes
In this session, after introducing the principal pharmacokinetic parameters, we describe the PK and PK/PD characteristics of each drug administration route. We discuss the different medical-scientific questions to be addressed by PK/PD research for the different routes.

Pharmacodynamic studies
In this session we discuss the scope of pharmacodynamics, distinguish pharmacodynamic from clinical outcomes, and outline how the former may be used as surrogates for the latter. The core information from PD studies is a quantitative description of the dose–response relationship and the influence of various factors on this relationship. We emphasise the importance of interpreting the shape of the dose–response curve in making major decisions on a drug’s development. Finally, we discuss factors that can influence the beneficial and adverse effects of a drug.

Assessment
Multiple-choice mastery assessment.

 Zenosis Ltd. is a subsidiary of Leopink Ltd.

Approved by the Royal Society of Chemistry for purposes of continuing professional development.
This module extends the learner’s understanding of pharmacokinetic and pharmacodynamic studies from the basics described in our companion module PKPD01, An Introduction to Pharmacokinetics and Pharmacodynamics in Drug Development and Registration. It provides detail on a variety of aspects of such studies: design, sampling, data analysis, research in special populations, and bioequivalence testing.

Who will benefit from this module?
Pharmacologists, nonclinical researchers, clinical researchers, regulatory affairs staff, and others who contribute to drug development and registration will benefit from this module.

Module outline

- Module overview
- Study design
- Sampling practice and outcomes
- Data analysis
- Special populations
- Generics and bioequivalence
- Assessment

Learning objectives

- Summarise the advantages, and how to counteract the main weakness, of the core design of choice for many pharmacokinetic and pharmacodynamic studies
- Adopt good sampling practice
- Discuss non-compartmental and compartmental data analysis
- Describe the responsibilities of a clinical investigator.
- Describe the rationale and characteristics of studies in special populations
- Describe how to carry out bioequivalence testing

Study design
In this session we discuss the core design of choice for many PK and PD studies: crossover. We outline its advantages and how to counteract an important weakness, which is the carry-over effect.

Sampling practice and outcomes
Arguably the most important aspect of the design of a PK or PD study is the sampling schedule. How many samples should be taken per subject and at which time points after dosing? Choice of these factors is crucial in minimising bias and maximising the precision of results. In this session we explain principles of good practice in sampling.

Data analysis
In this session, after introducing the principal pharmacokinetic parameters, we describe the PK and PK/PD characteristics of each drug administration route. We discuss the different medical-scientific questions to be addressed by PK/PD research for the different routes.

Special populations
Drug development entails research not only into the target population as a whole but into sub-populations with a common demographic or health characteristic that may produce treatment outcomes that differ significantly from the average. In this session we discuss such special populations and how they are studied.

Generics and bioequivalence
Licensing of generic drugs is an area in which pharmacokinetic studies constitute the prime determining factor. In the great majority of cases the test that determines the licensing of a generic drug is a comparison of its plasma concentration–time course with that of the product it copies – a bioequivalence test – to assess whether they are sufficiently similar. In this session we describe how to carry out bioequivalence testing.

Assessment
Multiple-choice mastery assessment.
Good Manufacturing Practice

GMP01: An Introduction to Good Manufacturing Practice for Medicinal Products
GMP02: Good Documentation Practice
GMP03: Good Manufacturing Practice in Cleaning and Sanitation
GMP04: Good Manufacturing Practice for the Warehouse
GMP05: Good Manufacturing Practice in Processing Medicinal Products
GMP06: Good Manufacturing Practice in Packaging Medicinal products
GMP07: Corrective and Preventive Action (CAPA) in Medicinal Products Manufacture
QAC01: An Introduction to Good Quality Control Laboratory Practice
An Introduction to Good Manufacturing Practice for Medicinal Products

Approximate module time: 1.5 hours
Level: Foundation
Audience: Manufacturing personnel
Category: GMP/QA/QC
Region: Europe, USA, Other
CPD Points: 1.5

Module outline
- Module overview
- GMP – what and why
- Principles of GMP
- Hygiene, cleaning, and sanitation
- Documentation and records
- Assessment

Module overview
An outline of the module’s scope and objectives, and notes on terminology.

GMP – what and why
This session explains what GMP is and why it is important, and it gives some lessons from history. It introduces the regulations and guidance documents which are the source of GMP rules. Finally it touches on regulatory inspections and the consequences that can arise from failure to comply with GMP requirements.

Principles of GMP
In this session we present an overview of the main principles of GMP, and we outline some things that manufacturing personnel need to do to comply with requirements. We identify the principal goals of GMP as: prevention of contamination; prevention of mix-ups; scrupulous documentation; validation and maintenance of processes and equipment; quality assurance by an independent unit; and training. We place GMP in the context of a company’s quality management system.

Hygiene, cleaning, and sanitation
Prevention of contamination is one of the most important goals of GMP. Contamination of product is often difficult to detect, so GMP rules emphasise preventive measures, including: attention to personal health and hygiene, and the wearing of special clothing, by staff; and cleaning and sanitation of premises and equipment. In this session we set out the basics of GMP requirements in these vital areas.

Documentation and records
Comprehensive documentation of procedures, formulas, work instructions, and specifications, and thorough recording of batch data, are fundamental requirements of GMP. In this session, we explain why documentation is so important, identify different types of document required, and set out some simple rules for recording and correcting data.

Assessment
Multiple-choice mastery assessment.

Who will benefit from this module?
Everyone who works in, or has occasion to enter into, a manufacturing environment in the pharma/biotech industry should have access to this module.

Learning objectives
- State what GMP is and describe why it is important
- Identify sources of GMP rules in regulations and internationally standardised guidance
- Identify major goals of GMP, outline what manufacturers must do to achieve them, and list some of the things that you need to do in order to contribute
- Comply with basic requirements regarding hygiene, cleaning, and sanitation
- Comply with basic requirements regarding documentation

Approved by the Royal Society of Chemistry for purposes of continuing professional development.

Zenosis is a subsidiary of Leopink Ltd.
Good Documentation Practice

Good Manufacturing Practice (GMP) for medicinal products relies on documentation. Good Documentation Practice (GDocP) is that part of GMP that applies to the creation, maintenance, use, and retention of documents to provide assurance of the quality of products.

In this module, we emphasise the crucial importance of GDocP and we identify five principles that underpin it. We explain the functions of the various types of documents that are used and discuss how they should be created and controlled. Finally, we set out requirements for record keeping – how data are to be entered into records, corrected if necessary, and how records must be retained.

Who will benefit from this module?
Everyone who works in a manufacturing environment in the pharma/biotech industry will benefit from this module. It will be of especial interest to quality assurance staff.

Learning objectives
- Explain why Good Documentation Practice is important, and identify principles that underpin it
- List the various types of documents used and explain their functions
- Discuss how documents should be created and controlled
- Specify requirements for record keeping, including those for entering and correcting data

Module outline
- Introduction
- Importance and principles of GDocP
- Types of documents
- Document creation and control
- Record keeping
- Assessment

Module overview
An outline of the module’s scope and objectives, and notes on terminology.

Importance and principles of GDocP
Good Documentation Practice underpins Good Manufacturing Practice. In this session we emphasise the crucial importance of compliance with, and we identify fundamental principles of GDocP.

Types of documents
In this session we describe the various types of documents found in a GMP-compliant environment – their functions, contents, and relationships.

Document creation and control
Careful control of GMP-relevant documentation is vitally important for quality management. In this session we identify principles of document control and characteristics of controlled documents, outline how documents should be created and maintained, and give advice on good practice in the creation of templates or masters for records.

Record keeping
Scrupulous and thorough recording of manufacturing activities is very important for a variety of reasons. In this session we set out these reasons, we provide rules for recording and correcting data in compliance with GMP requirements, and we specify requirements for the retention of records.

Assessment
Multiple-choice mastery assessment.
Cleaning and sanitation of premises and equipment are essential to efforts to prevent contamination of product, and they need to be done in compliance with Good Manufacturing Practice (GMP) regulatory requirements. This module shows why it is so important to do a good job, what to consider before and during each job, and how best to go about the work.

We begin by explaining how product may become contaminated and what can be done to prevent contamination through effective cleaning and sanitation procedures. We set out good practices to keep the factory clean and sanitary, and we describe how to prepare for and carry out cleaning and sanitation of premises. Finally we turn to the vitally important subject of cleaning and sanitising of production equipment.

Everyone who works in a manufacturing environment in the pharma/biotech industry will benefit from this module.

Learning objectives

- Understand why cleaning and sanitation are so very important in preventing contamination of product
- Adopt good practices in preparing for, carrying out, and recording the cleaning and sanitising of premises and equipment

Module overview

An outline of the module’s scope and objectives, and notes on terminology.

Preventing contamination

Preventing contamination of product is one of the highest priorities in the factory, and effective cleaning and sanitation are essential to these efforts. In this session we describe sources of contamination and how to deal with them. We discuss the agents and equipment used, precautions to be observed, and the principles of the work required.

Cleaning and sanitation of premises

The whole factory must be kept clean and sanitary. In this session we discuss how to contribute to general cleanliness of the premises and how to go about cleaning surfaces in the buildings. We also outline pest control measures.

Cleaning and sanitising of equipment

Production equipment must be thoroughly cleaned, and sanitised as necessary, to prevent contamination of product. In this session we describe how to go about this vital task in compliance with GMP requirements. We discuss how the grade of work required may vary according to the use of equipment, and we emphasise that written and validated procedures must be followed exactly. We focus on equipment parts that require particular attention, and we explain the significance of hold and dwell times. We end with the completion of cleaning status tags and records, and we outline the use of automated clean-in-place systems.

Assessment

Multiple-choice mastery assessment.
The warehouse plays a crucial role in a medicinal products factory. This module explains the requirements of Good Manufacturing Practice (GMP) for the warehouse, and how to comply with them.

We begin with an introduction to work in the warehouse of a medicinal products manufacturer, in which we describe the kinds of goods that come in and go out and how they may be stored in a typical layout. We identify methods of segregating stock, and we set out seven main goals of GMP for the warehouse. GMP for the warehouse overlaps with Good Distribution Practice (GDP), which applies to the whole distribution chain for products.

In the next session we discuss procedures for the receipt of inward goods and outline how the goods are checked, identified, labelled, quarantined, sampled and tested, and released for use or rejected. In the third session, we describe good practice for storage, inventory control, and transfer of materials and products to and from production. Finally, we discuss dispatch of finished products, and procedures for dealing with returned or recalled products.

Who will benefit from this module?
This module provides essential training for all personnel who work in the warehouse of a medicinal products manufacturer. Other staff working in a manufacturing environment in the pharma/biotech industry will also benefit from this module.

Learning objectives
- Comply with the requirements of Good Manufacturing Practice for the warehouse
- Carry out the tasks and checks necessary when receiving goods
- Follow good practice for storage and inventory control
- Carry out the tasks and checks required for dispatch of finished products
- Deal appropriately with returned or recalled products
Operations in the dispensary and on processing lines are at the heart of medicinal product manufacturing. This module describes how to carry out such operations in compliance with the requirements of Good Manufacturing Practice.

We discuss how to: dispense starting materials; set up, control, and record formulation processes; evaluate product yield and calculate materials reconciliation. We set out the Good Manufacturing Practice (GMP) requirements that must be met in carrying out these tasks.

Who will benefit from this module?

This module provides essential training for all personnel who work on the processing of medicinal products. Other staff working in a manufacturing environment in the pharma/biotech industry will also benefit from this module.

Learning objectives

- Dispense starting materials in compliance with GMP requirements
- Set up, control, and record formulation processes in compliance with GMP requirements
- Evaluate product yield and check materials reconciliation in compliance with GMP requirements
Packaging operations constitute the last manufacturing step before release of a product to the market. They convert bulk product to the final product.

Packaging for medicinal products is subject to Good Manufacturing Practice rules similar to those for the products themselves. In this module we describe the functions that packaging must fulfil and the quality controls that are applied to packaging materials and operations. We set out the requirements for control of printed materials. We describe preparation, in-process control, and completion of a packaging run. Finally, we explain how to carry out reconciliation of packaging materials.

Module overview
An outline of the module’s scope and objectives, and notes on terminology.

Packaging quality
Packaging, or container-closure, systems must contain and protect the product from spoilage, preserve its stability, and provide evidence of tampering as required. Labelling must provide the correct information about the product, its storage requirements, and its use. Information that allows the distribution of batches to be traced should be included, and measures to defeat counterfeiters are increasingly required.

Packaging quality affects product quality, so packaging materials, systems, and operations are subject to quality assurance requirements that are similar to those for starting materials and products. Controls must be in place to provide assurance that packaging fulfils its various functions. In this session we set out those functions and sketch examples of the kinds of controls that are necessary.

Control of printed materials
Control of printed materials is an especially important part of packaging operations. All information on packaging materials and inserts must correctly apply to the product and batch. Mislabelling/misbranding of a drug is a very serious error.

In this session we describe controls applied to printed materials at the printer, on receipt of inward goods, and in storage, issue, and return to store. We outline how variable data such as batch numbers and expiry dates can be coded on packaging materials. Finally, we emphasise the importance of reconciliation of printed materials.

The packaging run
A packaging run is subject to controls similar to those for the processing of product. Checks must be carried out beforehand, in-process and other quality controls need to be applied during the run, all operations must be recorded, and cleaning needs to be done afterwards.

In this session we identify documents that need to be followed for the run, we describe line clearance and set-up tasks, and we discuss in-process controls and statistical quality control.

Reconciliation of materials
Reconciliation of materials is an important control for packaging operations. In this session we describe the reconciliation of quantities of product and of printed matter.

Assessment
Multiple-choice mastery assessment.
Corrective and Preventive Action (CAPA) in Medicinal Products Manufacture

A company’s Corrective and Preventive Action (CAPA) system establishes how personnel should deal with manufacturing problems that have occurred or that may occur if not prevented. This module explains the principles of corrective and preventive action and describes typical CAPA procedure. It goes on to introduce root cause analysis and outline the role of progress tracking, escalating, and trending of CAPA procedures.

Who will benefit from this module?

This module provides essential training for all personnel who work in a manufacturing environment in the pharma/biotech industry.

Learning objectives

- Explain what a CAPA system is and describe how it operates in a company’s Quality Management System
- Describe how a typical CAPA procedure is carried out
- Outline the purpose and practice of root cause analysis
- Discuss the role of progress tracking, escalating, and trending of CAPA procedures

Module outline

- Module overview
- CAPA principles
- CAPA procedure
- Root cause analysis
- Tracking, escalation, and trending
An Introduction to Good Quality Control Laboratory Practice

Approximate module time: 2 hours

Level: Introductory/Intermediate

Audience: QC laboratory staff

Category: GMP/QA/QC

Region: USA, Europe, Other

CPD Points: 2

Module outline
- Introduction
- Laboratory quality manual
- Basic laboratory safety practices
- Laboratory documentation
- Record keeping and data recording
- Test methods and specifications
- Good automated laboratory practices
- Managing out-of-specification events
- Housekeeping and lab audits
- Additional resources
- Assessment

Introduction
Within the medicinal products industry’s Good Manufacturing Practice (GMP) framework, analytical laboratories engaged in quality control of starting materials, intermediates, bulk products, finished products, and packaging, are required to comply with relevant GMP standards. We refer to these as Good Quality Control Laboratory Practice, or GQCLP, standards. Regulatory authorities may inspect laboratories for compliance with the standards.

This module introduces QC laboratory staff to the requirements that they need to meet to comply with GQCLP.

Who will benefit from this module?
All staff engaged in the quality control of medicinal products will find the module valuable as an introduction or refresher course.

Learning objectives
- Access GQCLP guidelines and regulations
- Describe typical contents of a laboratory quality manual
- State some basic laboratory safety practices
- Identify key types of laboratory document and summarise their contents and relationships
- Specify good practices for record keeping and data recording
- List key features of test methods and specifications
- Identify regulations and guidelines on the management of electronic data
- Outline how to handle out-of-specification conditions
- State why laboratory housekeeping is important and identify types of audit

Module outline
- Introduction
- Laboratory quality manual
- Basic laboratory safety practices
- Laboratory documentation
- Record keeping and data recording
- Test methods and specifications
- Good automated laboratory practices
- Managing out-of-specification events
- Housekeeping and lab audits
- Additional resources
- Assessment

Record keeping and data recording
Emphasises the importance of record keeping and gives examples of key records. Gives guidance on completing lab notebooks and reviewing records. Specifies requirements for retention and storage of data records.

Test methods and specifications

Good automated laboratory practices

Managing out-of-specification events
Defines categories of out-of-specification (OOS) event. Describes the process of investigating an OOS event: initial laboratory investigation, formal management investigation, documentation and corrective action. Discusses requirements and restrictions on retesting, resampling, and averaging results. Outlines analysis of out-of-trend conditions.

Housekeeping and lab audits
Emphasises importance of lab housekeeping and auditing.

Additional resources
Provides access to important sources of regulation and guidance.

Assessment
Multiple-choice mastery assessment.
Drug Safety

PV03: An Introduction to Drug Safety and Pharmacovigilance
PV04: Signal Detection and Management in Pharmacovigilance
PV05: Risk Management Planning for Medicinal Products
PV06: Urgent Safety Restrictions
PV07: Good Pharmacoepidemiology Practice

Zenosis Ltd. is a subsidiary of Leopink Ltd.
An Introduction to Drug Safety and Pharmacovigilance

Approximate module time: 2 hours
Level: Foundation
Audience: Drug Safety, Regulatory, Compliance, Manager, Other
Category: Drug Safety, Clinical
Region: USA, Europe, Other
CPD Points: 2

Drug safety monitoring and risk management are vitally important for medicinal product developers, licence holders and clinical investigators. In addition to their duty to protect public health, increasingly tight regulation and potentially massive payments to litigants provide strong incentives for pharmaceutical and biotechnology companies to ensure that they maintain efficient systems for drug safety / pharmacovigilance and that all staff are aware of the basic requirements. This course will provide them with an overview of the most important aspects of this discipline, both before and after marketing of products, especially as they apply in Europe and the USA.

Who will benefit from this module?
Entry-level staff, and those seeking a refresher, in drug safety / pharmacovigilance and clinical departments will find the course invaluable, as will clinical investigators and other healthcare professionals. Staff in other departments of pharmaceutical and biotechnology companies will benefit from taking the course to gain an appreciation of the basics of the subject.

Module outline
- Module overview
- Regulation and company organisation
- Before a product is marketed
- After a product is marketed
- Quality system, inspections and audits
- Review and further information
- Assessment

Learning objectives
- Explain, with examples, why drug safety monitoring / pharmacovigilance is necessary
- Describe ways in which drug safety / pharmacovigilance is regulated nationally and internationally, and identify international policy-making bodies.
- Outline how drug safety / pharmacovigilance responsibilities are organised within pharmaceutical and biotechnology companies.
- Sketch how a product safety database is compiled, how a product’s safety profile is assessed, and how safety information is included in documentation for regulatory authorities, healthcare professionals, and consumers.
- Apply appropriate terms to describe different types of adverse effect.
- Specify requirements to report adverse reactions to regulators.
- Outline requirements for safety data and for risk management plans in applications for marketing approval.
- List tasks involved in monitoring adverse reactions to marketed products, and sketch how safety signals are detected and tested.
- Identify factors that influence the evaluation of a product’s benefit/risk balance, and list actions that may be taken in response to changes in the balance.
- Identify ways in which the quality of a pharmacovigilance system may be assured, and outline preparations for a regulatory inspection or audit.

Module overview
Describes what the course is about, sets out learning objectives, defines key terms and provides a brief overview of course content.

Regulation and company organisation
Explains the rationale for modern drug safety / pharmacovigilance (PV) regulation and practice, describes international policy-making bodies and sources of regulatory guidance, and outlines company drug safety / PV organisation, product safety databases and core safety information.

Before a product is marketed
Sets out the fundamentals of pre-marketing drug safety / PV: safety information for investigators, describing adverse effects, clinical trial reporting requirements, safety data in marketing applications, risk management planning, and product information.

After a product is marketed
Sets out the fundamentals of post-marketing PV: monitoring adverse drug reactions, licence holders’ reporting requirements, detecting and testing safety signals, assessing benefit/risk balance, risk minimisation, communicating new safety information, product withdrawal.

Quality system, inspections and audits
Describes measures, increasingly emphasised by regulators, to ensure adequate performance of a PV system: the organisation’s PV quality system, regulatory inspections, and audits.

Review and further information
Summarises key points and provides links to important guidance documents and other reference sources.

Assessment
Multiple-choice mastery assessment.

Zenosis ltd. is a subsidiary of Leopink ltd.
The fundamental aim of drug safety assessment is to establish what adverse reactions may be caused by a medicinal product. Factors such as seriousness, severity, and frequency of reactions are then taken into account, along with the medical benefit of the drug, in establishing the benefit/risk profile of the product.

Product licence holders and regulatory authorities monitor the safety of licensed drugs to detect adverse reactions that are unexpected qualitatively or quantitatively and that alter benefit/risk balance, and they take risk minimisation action as necessary. Such pharmacovigilance principally involves the identification and evaluation of safety signals in information obtained from a wide range of data sources.

The methods used range from traditional medical assessment of individual spontaneous reports of adverse events, through ‘data mining’ of large databases, observational studies of ‘real world’ prescription and use, to interventional clinical trials.

This module provides a guide to signal detection and management for approved products. The subject is presented as a process comprising four stages: signal detection, signal validation, signal analysis and prioritisation, and risk assessment and minimisation.

Who will benefit from this module?
All staff working in medical, drug safety, or pharmacovigilance departments of pharmaceutical or biotechnology companies or contract research organisations should have access to this module. It will also be of value to healthcare professionals and regulatory authority personnel.

Learning objectives
- Identify methods of signal detection and discuss their limitations
- Describe how to accumulate evidence on a causal association between a drug and an event
- Specify factors that increase the priority assigned to a signal, and describe methods of further investigation
- Discuss reassessment of benefit/risk balance in the light of a previously unexpected reaction to a product, and specify actions to minimise risk
Proactive risk management is a major component of good pharmacovigilance practice. This module sets out the principles of risk management planning and outlines regulatory requirements for risk management plans in regions that are major markets for medicinal products.

All staff working in medical, drug safety, or pharmacovigilance departments of pharmaceutical or biotechnology companies or contract research organisations should have access to this module. It will also be of value to healthcare professionals and regulatory authority personnel.

Learning objectives

- Explain important principles of risk management planning
- Give examples of risk minimisation activities
- Describe the selection of risk minimisation activities that are proportional to a product’s benefit/risk balance and do not impose undue burden on stakeholders
- Outline regulatory requirements for risk management plans in regions that are major markets for medicinal products

Principles of risk management planning

In this session we set out principles of risk management planning as a major component of good pharmacovigilance practice. We discuss the modern emphasis on proactive risk management in addition to routine pharmacovigilance measures. We describe risk assessment factors important in safety specification, pharmacovigilance planning, and risk minimisation for a drug. We then focus on the selection, implementation, and evaluation of non-routine risk minimisation activities.

Regulatory requirements for risk management plans

In this session we outline regulatory requirements for risk management plans in regions that are major markets for medicinal products: Europe, the USA, and (in a brief sketch) Japan. We describe the structure, main components, and submission requirements for EU Risk Management Plans and US Risk Evaluation and Mitigation Strategies, and we sketch notable aspects of risk management requirements in Japan.

Assessment

Multiple-choice mastery assessment.
An Urgent Safety Restriction (USR) is a regulatory action taken, in response to a safety signal, to make an interim change to the terms of the marketing authorisation for a medicinal product in Europe. This module describes the principles and procedures for USRs.

All staff working in medical, drug safety, or pharmacovigilance departments of pharmaceutical or biotechnology companies with products authorised in Europe should have access to this module. It will also be of value to healthcare professionals and regulatory authority personnel.

Learning objectives
- Explain the purpose of Urgent Safety Restrictions in Europe
- Describe how an USR may be triggered
- Describe the general regulatory requirements for preparation and initiation of an USR
- Outline the 24-hour procedure for execution of an USR
- Specify the requirements for a variation application following an USR

Who will benefit from this module?
All staff working in medical, drug safety, or pharmacovigilance departments of pharmaceutical or biotechnology companies with products authorised in Europe should have access to this module. It will also be of value to healthcare professionals and regulatory authority personnel.

Module outline
- Module overview
- Principles
- Procedure
- Assessment

Principles
In this session we define Urgent Safety Restriction and explain its purpose in the European Union and other countries of the European Economic Area. We describe how an USR may be triggered. Finally, we give some examples of safety signals that may, and some that may not, give rise to an USR.

Procedure
In this session we describe how to prepare for and initiate an Urgent Safety Restriction (USR) for a centrally authorised product and for a product authorised through the Mutual Recognition or Decentralised Procedure. We outline the 24-hour procedure for execution of an USR, and the follow-up actions required, in each case. Finally, we specify the requirements for a variation application following an USR.

Assessment
Multiple-choice mastery assessment.

zenosis ltd. is a subsidiary of Leopink ltd.

Approved by the Royal Society of Chemistry for purposes of continuing professional development.
Pharmacoepidemiology is the study of the use and effects of drugs in large numbers of people. It provides a bridge between clinical pharmacology and epidemiology. The increasing demand for real-world evidence of the safety, efficacy and utility of medicinal products has focused greater attention on pharmacoepidemiological research. This module will help those who plan and conduct such research, and analyse and report the findings, to follow good practice.

Who will benefit from this module?

Staff working in drug safety and pharmacovigilance or clinical research departments of pharmaceutical and biotechnology companies will benefit from this module. It will also be of value to healthcare professionals.

Module outline

- **Module overview**
 An outline of the module’s scope and objectives, and a glossary of terms.

- **Study planning and data collection**
 In this session, we:
 - Outline the role and formulation of a research question and study protocol
 - Discuss the choice of study design and research methods
 - Identify types of data source and means of data collection
 - Summarise obligations for protection of subjects
 - Discuss operational definition and validation of drug exposure, outcomes, and covariates
 - Give examples of good practice in data collection, management, and verification

- **Analysis, interpretation, and communication**
 In this session, we:
 - Discuss data analysis and the interpretation of results
 - Outline the role and formulation of a statistical analysis plan
 - Describe obligations for provision of a study report and communication of findings

- **Assessment**
 Multiple-choice mastery assessment.
ICT

ICT01: Compliance with Regulation 21 CFR Part 11 on Electronic Records and Electronic Signatures
Compliance with Regulation 21 CFR Part 11 on Electronic Records and Electronic Signatures

Part 11 of Title 21 of the US Code of Federal Regulations (21CFR11) sets out requirements that computer systems must meet to satisfy the Food and Drug Administration (FDA) that electronic records and electronic signatures provided by those systems are trustworthy and reliable to the same extent as paper counterparts. The regulation sets out controls and procedures which need to be established and followed for relevant computer systems in FDA-regulated environments. An FDA-regulated environment is a ‘GxP’ environment operated by an organisation involved in activities leading to the marketing of drugs or medical devices in the USA; examples are drug manufacturing sites, medical device manufacturing sites, analytical laboratories, clinical investigational sites, and nonclinical study laboratories.

21CFR11 applies to records that are required to be submitted to the FDA, or that are subject to FDA inspection, and that are in electronic form – that is, as computer files. It applies to all computer systems used to create, modify, maintain, archive, retrieve, or transmit such records – from a humble spreadsheet program to a complex information management system.

Companies that market or intend to apply for approval to market drugs or medical devices in the USA must comply with 21CFR11, whether or not they are based in the USA. Suppliers to such companies of materials, equipment, or data that are subject to FDA regulation must also comply.

This module provides essential training for all personnel who use computer systems in GxP environments.

Module outline
- Module overview
- 21CFR11 and its scope
- Procedures and controls
- Electronic signatures
- FDA enforcement discretion
- Assessment

Who will benefit from this module?
This module provides essential training for all personnel who use computer systems in GxP environments.

Learning objectives
- Define regulation 21CFR11 and explain its context and purpose
- Specify criteria to determine which environments, computer systems, electronic records, and electronic signatures must comply with the regulation
- Describe procedures and controls required by the regulation for electronic records and electronic signatures
- Describe the consequences of the FDA's discretion in enforcing compliance with some of the provisions of the regulation
How can Zenosis benefit me?

Benefits of Zenosis e-Learning to an organisation and end user:

24/7 learning – Users can access modules when they want. For example at work, at home or when travelling.

Always up to date – New information allows the end user to always be in touch with changing regulations and legislations.

No geographical barriers – Bringing users together from various locations on a specific date is eradicated.

User overheads are lower - No travel, accommodation, or food costs to account for.

Flexibility – The end-user is able to skip through information they may already know, and a beginner has up to a year to access the information if they need it or simply for reference.

Self-paced learning – This allows the user to learn at their own speed; to stop and start as they choose.

Custom design – We can amend or change a module to meet specific company needs.

Greener – The company’s carbon footprint is reduced with no travel.

CPD points – Users earn Continuing Professional Development (CPD) points awarded by the Faculty of Pharmaceutical Medicine of the Royal Colleges of Physicians of the United Kingdom.

To discuss any of the modules or to set up free trial access please contact:
E: info@zenosis.com T: +44(0) 207 148 0930 W: www.zenosis.com